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1-INTRODUCTION:

Robotic manipulators are highly non-linear, dynamically coupled, multi-
axis electromechanical systems that are commonly used in tasks such as
welding, material handling in manufacturing, and as accurate positioning
systems. In these tasks, the end-effectors are required to move from one place to
another, or to follow some desired trajectories as close as possible at a fast
operational speed in a free workspace. Trajectory tracking control of robots is,
thus, of practical significance, and is the simplest yet the most fundamental task
in robot control [1]. Concurrent advances in microprocessor technology have
made the implementation of complicated non-linear control algorithms
practically feasible. Robots may have to manipulate loads of different weight,
size and mass distributions, in which case, the dynamics of the robots will also
be different. Controllers designed for a particular nominal payload may not be
able to control the system properly for all changes in the parameters. Some
model based adaptive controllers have been proposed based on linear in the
parameters models. The controllers are both stable and robust under certain
conditions. The system can achieve asymptotic tracking without using infinite-
gain feedback through on-line parameter adaptation when the system is subject
to parametric uncertainties only [2].  However, instability may occur due to
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some bounded uncertain disturbances or plant non-linearity [3], making zero
tracking accuracy no longer guaranteed since the steady state tracking error can
only be shown to stay within an unknown ball whose size depends on the
disturbances. Recently, suggestions have been made to use neural networks to
overcome the need for linear parameterization models. In many schemes, neural
networks are firstly "trained" off-line to obtain sufficiently accurate
approximations of the input-output functions of the systems, and the networks
can be appropriately used to construct controllers. Other attempts were made to
train the neural network on-line during normal system operations [4,5]. It is
known that neural networks have the static mapping capability. However, when
they are used as controllers, they are able to realize the dynamics [6]. Despite
the fact that neural networks are very powerful in learning complicated
dynamics, the sizes of the networks are known to be very large, especially the
dynamic ones, which subsequently leads to the need of powerful computational
facilities. Recent research [7] on parsimonious construction algorithm for linear
in the parameters neural networks overcomes the curse of dimensionality
associated with dynamic neural networks. As this is a non-linear optimization
scheme, it can only be achieved off-line.

The goal of the present work is the design of three types of Multi-
layered neural network controllers applied to control a dynamic 2D-Robot
manipulator. During this design, different learning techniques will be used for
temporal process, and a study of the behavior of the system will be investigated.
The proposed architectures for training different neural network controllers are
used to provide the appropriate inputs to the 2D-Robot arm so that the desired
response can be obtained. The first architecture is a neural network controller
that anticipate the output of a PD controller and which weights are tuned due to
the Torque control. The second architecture is the same as the first one but in
which the weights of the neural network are tuned by minimizing the output of a
PD controller. The third architecture will use an artificial neural network
controller that anticipates the desired input of the closed loop system consisting
of a PD controller in cascade with a 2D-Robot arm. The search of optimum
architectures of the controllers will be carried out. The performances of the
three controllers with different trajectories will be examined. Finally, a
comparative study with respect to desired performances will be investigated.

2 - 2D DYNAMIC PLANAR ARM:

2-1 - Parameters of the planar arm:

Our focus in this section is to provide the design fundamentals for neural
networks controllers used in robotics systems. Trajectory control of robotic
manipulators traditionally consists of following a preprogrammed sequence of
end effector movements. Robot control usually requires control signals applied
at the joints of the robot while the desired trajectory, or sequence of arm end
positions, is specified for the end effector.
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Fig. 1: - Dynamic planar robot arm.

Figure 1 shows a planar manipulator with two revolute joints. Let us fix
notation as follows:
For i = 1,2

qi denotes the joint angle, which also serves as a generalized coordinate.
mi (kg) denotes the mass of link i (m1=9.5; m2=5).
li (m) denotes the length of link i (l1=0.25; l2=0.16).
lci (m) denotes the distance from the previous joint to the center of mass

of link i (lc1=0.2; lc2=0.14).
Ii (kgm2) denotes the moment of inertia of link i about an axis coming

out of the page and passing through the center of mass of link i
(I1=4.3x10-3; I2=6.1x10-3).

2-2 - Equation of motion:

In the case of the planar robotic manipulators, two conditions are satisfied:
First, the kinetic energy is a quadratic function of the vector q

r
&  of the form:

q)q(Dq
2
1

K T r
&rr

&= (1)

Where the n x n "inertia matrix" D is symmetric and positive definite for
eachq

r
.

Second, the potential energy V = V (q
r

) is independent of q
r
& .

By applying the Euler-Lagrange equations for such a system, we obtain:

n,...,1k,)q(qq)q(cq)q(d kk
j,i

jiijkj
j

kj =τ=φ+∑+∑
r&&r&&r

(2)

In the above equation, there are three types of terms. The first involve the
second derivative of the generalized coordinates. The second are quadratic
terms in the first derivatives of q

r
, where the coefficients may depend onq

r
.

These are classified into two types. The Centrifugal terms involve a product of

the type 2
iq& , while the Coriolis terms involve a product of the type jiqq &&  where

i≠j. The third type of terms are those involving only q
r

 but not its derivatives.
Clearly this third term arise from differentiating the potential energy. It is
common to write this equation in matrix form as:

τ=++
rrrr

&
r
&rr

&&r
)q(gq)q,q(Cq)q(D (3)
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By applying the mechanical equation of motion to the manipulator, we
obtain:

qJqBu
r
&&rr

&r
=τ−− (4)

Where B is a friction matrix, J is a diagonal inertia matrix and u
r

is the
applied input torque to the planar manipulator.

Combining equations (3) and (4) yields:

u)q(g)q,q(hq)q(M
rrrr

&rrr
&&r

=++ (5)
Where:

* q,q,q
r
&&

r
&r

 are the joint angle, joint velocity, and joint acceleration respectively.
*M )q(

r
defines a 2x2 mass matrix that describes the inertial properties of the

arm.
* q)B)q,q(C()q,q(h

r
&

r
&rr

&rr
+=  defines a vector that describes Coriolis and

Centripetal acceleration, and friction terms in the dynamics of the robot
manipulator.

* )q(g
rr

is a vector that specifies the effects of gravitational forces acting on the
arm.

* u
r

 represents the input vector torque that act on the manipulator.

2-3 - Robot dynamic modeling:

We will make effective use of the Jacobian expressions in computing the
kinematic energy. Since we are using joint variables as the generalized
coordinates, it follows that:

The expression of the velocity of the center of mass of link one is:

qJv 1cv1c
r
&r r= (6)

Where 1cvJ r represent the Jacobian of link one whose expression is give by:
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Similarly, the expression of the velocity of the center of mass of link two is:
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Where 2cvJ r represent the Jacobian of link two whose expression is give by:
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Hence the translational part of the kinetic energy is:

{ }qJJmJJmq
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Next we deal with the angular velocity terms. Because of the particularly
simple nature of this manipulator, many of the potential difficulties do not arise.

First, it is clear that:

k)qq(,kq 21211
r

&&rr
&r

+=ω=ω (11)

When expressed in the base inertial frame.

The z-axes of all of these frames are in the same direction, so the above
expression is also valid in the link-bound frame. Moreover, since iω

r
is aligned

with k
r

, the triple product ii
T
i I ωω

rr
reduces simply to (I33)i times the square of the

magnitude of the angular velocity. This quantity (I33)i is what we have labeled Ii
above. Hence the rotational kinetic energy of the overall system is:
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Finally, the expressions of the different elements of the inertia matrix D are:
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The Christoffel symbols are defined by the expressions:
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The potential energy of the manipulator is just the sum of those of the two
links. For each link, the potential energy is just its mass multiplied by the
gravitational acceleration and the height of its center of mass. Hence, the
functions φk become:
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Finally, the dynamical equations of the system are:

 22
2
1112222121

11
2
22211221121121212111

qcqdqd

qcqqcqqcqdqd

τ=φ+++

τ=φ+++++

&&&&&

&&&&&&&&&

(16)

The robot model is simulated numerically using the fourth-order Runge-
Kutta method for the solution of differential equations. Note that the robot
dynamics equation (16) must first be rearranged into standard form:

))q(g)q,q(hu)(q(Mq 1 rrr
&rrrr

&& −−= −  (17)

Implementation of the numerical algorithm is then straightforward.

3 - Multi-Layer Perceptrons Controllers:

3 -1- Multi-layer perceptrons (MLP):

Multi-layer perceptrons [8] provide one arrangement for neural network
implementation, by means of nonlinear relationships between, firstly, the
network inputs to outputs and, secondly, the network parameters to outputs.
Such a network consists of a number of neuron layers, n, linking its input
vector, u, to its output vector, y, by means of the equation:

y = ϕn(Wnϕn-1(Wn-1…ϕ1(W1u + b1) +…+ bn-1) + bn) (18)

In which Wi is the weight matrix associated with the layer, ϕi is a
nonlinear operator associated with the ith layer and bi indicate threshold or bias
values associated with each node in the ith layer. The function ϕi is a sigmoid
function for all n.

It is known in reality that real neurons, located in different areas of the
nervous system, have different modes of behavior [9] ranging from Gaussian-
like for visual needs to sigmoid for ocular motor needs. It is generally the case
for artificial neural networks, however, that only one type of non-linearity is
employed for a particular network, this linking in closely with the fact that each
network is only employed for one particular task.

u1 ∑ ϕ1 ∑ ϕ2 y1

u2 ∑ ϕ1 ∑ ϕ2 y2

um ∑ ϕ1 ∑ ϕ2 ym

Fig.2: - A two-layer multi-layer perceptron.
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Figure 2 shows a fully connected network in that all of the neuron outputs
in one layer of the network are connected as inputs to the next layer. This is
normal practice: however, it is quite possible for part-connectivity to be realized
by connecting a group of outputs to only specific input. By this means sub-
models can be formed within the overall MLP, and these can be particularly
useful where a specific system characteristic is to be dealt with or inputs/outputs
from the system can be categorized into certain types.

Whatever the network connectivity, key questions in the use of MLPs are
how many layers there should be and how many neurons there should be in each
layer. Once these structural features of the network have been selected, it
remains for the adjustable weights to be settled on such that the network is
completely specified in terms of its functionality.

3-2 - Dynamic back propagation learning:

By far the most popular method employed for weight training in MLP
neural networks is called back propagation [10]. In the standard feed-forward
MLP network, back propagation solves the problem of missing information to
the hidden layers, neither the input to nor the reference signals for the hidden
layers are known. This solving problem is obtained by taking the inputs to the
hidden layers as being the inputs to the first layers propagated through the
network. The reference signals for the hidden layers are then obtained by error
back propagation through the network. This is realized by obtaining the partial
derivative of the squared error with respect to the parameters.

It is worth pointing out that the back propagation algorithm has also been
used for weight learning in feedback neural networks [11,12], these being
networks in which the network structure incorporates feedback, whereby the
output of every neuron is fed back, in weighted form, to the input of every
neuron. The architecture of such a network is inherently dynamic and realizes
powerful capabilities due to its complexity.

Consider, as a starting point, a single neuron with output yi; then

)xexp(1

)ixexp(1
)x(y

i
ii −+

−−
=ϕ= (19)

In which:

∑
=

+=
m

1i
0jiji wuwx (20)

In this expression w0 is a bias term. If it is assumed that at an instant in
time, for an input ui the output yi should be equal to the desired output yd, then
the squared error of the output signal is given by:

2
i

2
idi e

2
1

)yy(
2
1

E =−= (21)

and it is desired to minimize Ei by means of a suitable/best choice of the
weighting coefficients wij .
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Consider the problem of minimizing the scalar error function E(W), where
W is a vector of weights to be adjusted by means of an interactive procedure
generating a number of  search points, W(k), such that:

W(k+1) = α(k)W(k) + η(k)d(k) (22)

In this relation an initial set of weightings W(0) is made through prior
knowledge, by a reasoned guess or even relatively randomly. The term
α(k)W(k) represent a momentum term and α(k) is usually a positive number
called the momentum constant. The term d(k) indicates the search direction,
whereas η(k) indicates the length of search step or the amount of learning to be
carried out.

In this way, the weights associated with one neuron can be adjusted in
order to minimize the squared error. The approach can then be extended in order
to adjust all of the weights in the MLP network. So, overall, a set of
input/desired output data values are used to train the entire network. The input
set also realizing a corresponding set of network weights such that the error
between the desired output signals and the actual network output signals is
minimized in terms of the average overall learning points. The back propagation
algorithm employs the steepest-descent method to arrive at a minimum of the
mean squared error function. For one specific data pair, the error squared can be
written as:

∑∑
==

=−=
m

1i

2
ik

2
ik

m

1i
dkk e

2
1

)yy(
2
1

E (23)

where m neurons are assumed to be present, and yik is the ith neuron’s kth
output value.

The global error is then found by minimizing Ek over all the data set. If
the number of data values that are present is N, then we have:

∑
=

=
N

1k
kEE (24)

This error function can then be minimized in batch mode or recursively in
an on-line manner.

The network is now fully trained on the data presented and can be
employed with any further data, although it may be desirable to present the data
again cyclically until the overall error falls below a previously defined
minimum value, i.e. until the weights converge. An important feature then
emerges in that the MLP network has the ability to generalize when it is
presented with new data not previously dealt with.

3-3 - NN controller tuned by the torque control (First Method):

Before describing the neural network systems, we detail the training
procedure used to provide error information to the systems.
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Actual joint
  variables

Feed-forward
Controller (NN) _

+

+ Feedback + + τ Robot
Desired Controller (PD) Arm
joint _

variables  

Fig. 3: - Feed-forward controller trained by minimizing the torque error

The procedure involves training an adaptive feed-forward controller to
control the arm in conjunction with a fixed feedback controller (Figure 3). The
feedback controller aids in generating training data that the forward controller
uses to learn a model of the arm's inverse dynamics. This direct approach to
training a neural network controller has been studied [13]. In order to achieve a
desired accelerationq

r
&& , an appropriate torque )t(τ

r
must be applied to the arm. The

relationship between acceleration and torque is the inverse dynamics of the arm
and the goal of the learning procedure is to train a feed-forward controller to
model this relationship. The feed-forward controller is trained on-line in the
following manner. At each time step, the control signal is obtained by summing
the outputs of the feed-forward controller and the feedback controller. The
inputs to the feed-forward controller are the desired joint positions, velocities,
and accelerations for the current time step, as specified by the reference
trajectory. The inputs to the feedback controller (a PD controller) are the desired
and actual joint positions and velocities. The sum of the feed-forward and
feedback control signals is a torque vector that is applied to the arm (figure 3,
straight line). The resulting joint accelerations are observed and the feed-
forward controller then receives the actual joint positions, velocities, and
accelerations as inputs and computes new outputs (figure 3, dashed line). An
error is computed between this output and the actual torque applied to the arm,
and the error is used to change the weights in the controller using back-
propagation algorithm [14]. Early in the training session, the feedback controller
dominates and the arm follows the desired trajectory imprecisely. As the feed-
forward controller learns to model the arm's inverse dynamics, it begins to
generate torque that allows the arm to follow the desired trajectory more
faithfully.

The neural network used is a multi-layer perceptron with one hidden
layer. The input vector contains nine components that are real valued and
represent the robot arm's joint positions, velocities, and accelerations.

)qsin(q),qcos(q),qcos(q,q,q 2
2
1222121 &&&&&&&&&

)qqcos(),qcos(),qsin(qq),qsin(q 2112212
2
2 +&&&  (25)
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Those components (25) are the transformations of the joint variables that are
conveniently chosen so as to facilitate the learning process of the robot arm's
inverse dynamics [14]. The output layer has two neurons, and the number of
hidden neurons in the hidden layer is chosen by simulation. The activation
function used is a sigmoid that uses the hyperbolic tangent function.

3-4- NN controller tuned by minimizing a torque control
(Second Method):

This second method [13,15] is represented in figure 4.

NN
τn

qd
+ ε PD τc

+ + u Robot q
Arm

_

Fig. 4: - Feedback Error Learning Control Structure.

The technique presented here employs a standard feed-forward neural
network. The neural network output is nτ

r and the control law of the arm is given
by the expression:

ncu τ+τ=
rrr

(26)

Where: ε+ε=τ
rr

&
r

pvc kk  and qqd
rrr

−=ε (27)

Combining the robot dynamic equation (5) and the control law (26), the error
dynamic equation can be written as:

)q(g)q,q(hqMkk npv
rrr

&
rrr

&&
rrr

& ++=τ+ε+ε (28)

 The training signal of the neural network is the output cτ
r

of the PD controller.
From equation (28) the expression of the output cτ

r
 will be:

nc )q(g)q,q(hqM τ−++=τ
rrrr

&rrr
&&r

(29)

The neural network is trained to minimize c
T
c2

1
E ττ=

rr
. Thus, at convergence

( 0c
rr

=τ ), the ideal output of the neural network will represents the robot inverse
dynamics. The neural network used is a multi-layer perceptron with one hidden
layer. The input vector contains four components 2121 q,q,q,q && that are real
valued and represent the robot arm's joint positions, and velocities. The output
layer has two neurons, and the number of hidden neurons in the hidden layer is
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chosen by simulation. The activation function used is a sigmoid that uses the
hyperbolic tangent function.

3-5 - NN controller that anticipates the desired input (Third Method):

The third architecture uses an artificial neural network controller that
anticipates the desired input of the closed loop system consisting of a PD
controller in cascade with the robot arm as shown in figure 5.

NN
v FD

φp

qd +
+ + e PD Robot q

qr Arm
_

Fig. 5: - Neural Network that anticipates the desired input.

In this structure the neural network controller is used to modify the
desired trajectory (qd1, qd2) instead of generating a compensating torque as in the
two previous methods. It has been shown [16] that the trajectory modification
approach for compensating robot model uncertainties in Cartesian space motion
control is as effective as compensating the control torque using neural network.
The purpose here is to develop the same control scheme for the non-model
based PD control problem. Let φp be the neural network output. The closed loop
system equation is given by:

)q(g)q,q(hqMekek pv
rrr

&
rrr

&&
rr

& ++=+ (30)

where ppdr qqqqe φ+ε=−φ+=−=
rrrrrrrr

(31)

and ppdr qqqqe φ+ε=−φ+=−=
r
&r

&
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&
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&
r
&

r
&

r
& (32)

The expression pφ
r
& can be estimated from the finite difference:

T/))1t()t(( ppp −φ−φ=φ
rrr

& (33)
T is the sampling period.

Substituting the error and its derivative into equation (30) yields:

pppvpv kk)q(g)q,q(hqMkk φ−φ−++=ε+ε
rr

&rrr
&

rrr
&&

rr
& (34)

We choose the training signal ε+ε=
rr

&
rr

pv kkvasv . The neural network output is

trained to satisfy 0v
rr

= . Thus the neural network output combined with its
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derivative will represent the inverse dynamics of the robot. The attractive
feature of this scheme is that it can be easily implemented in the trajectory
planner that is outside the closed loop system. The neural network is trained to

minimize vv
2
1

E Trr
= . The neural network used is a multi-layer perceptron with

one hidden layer. The input vector contains four components 2121 q,q,q,q && that
are real valued and represent the robot arm's joint positions, and velocities. The
output layer has two neurons, and the number of hidden neurons in the hidden
layer is chosen by simulation. The activation function used is a sigmoid that
uses the hyperbolic tangent function.

4 - NUMERICAL SIMULATION AND COMPARISON:

First, we simulate the robot arm without using neural network controller.
We have considered a desired trajectory defined by the equations:

Ym = 0.2 + 0.075sin(2πt/3)  and  Zm = 0.2 + 0.075cos(2πt/3) (35)

We have used ∆t = 0.01seconds for time integration. The choice of the 2x2 gain
matrices used in the PD controller was to obtain a stable system in the closed
loop system with bad performances, kv = 10.I and kp = 100.I where I represents
the identity matrix of order two. Figure 8 (blue line) shows the simulated
response of the system for the desired trajectory. Figures 9 & 10 (blue line)
show the responses of the joints angle and joints velocity. It is clear that the
choices of those values of gains are not well adapted to the control of this
dynamic 2-D robot arm.

4-1 - Numerical simulation of the First Method:

During the numerical simulation of the three methods, we have used the
back-propagation method with the first order convergence algorithm for training
the neural network in order to determine the synaptic weights. The objective
was to minimize a cumulative error E defined by:

]))tn(z)tn(z())tn(y)tn(y[(E 2
d

2N

1n
d ∆−∆+∆−∆= ∑

=
 (36)

where N = t/∆t denotes the sampling number within one trial. yd(n∆t),zd(n∆t) are
the demands of the trajectory on the Y-Z plane at the sampling time n∆t, and
y(n∆t),z(n∆t) are the actual trajectories.
In the first method, we have trained a number of neural networks using the error
back-propagation technique with different learning rates and different
momentum terms. Figure 7 shows an optimum learning rate equal to 3.10-3 and
an optimum momentum term equal to 0.1. Figure 6 shows that the (9-18-2)
multi-layer perceptron represents the optimal architecture with minimum
cumulative error equal to 4.27x10-5 obtained after 40 cycles. Moreover, figure 8
(green line) shows the tracking response of the end effector to the desired
trajectory, and figure 11 shows the evolution of the instantaneous square error
between the desired and actual position. This method presents the best
convergence in comparison with the other methods.
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4-2 – Numerical simulation of the Second Method:

A number of neural network controllers have been trained using the error
back-propagation technique with different learning rates and different
momentum terms. Figure 7 shows an optimum learning rate equal to 10-3 and an
optimum momentum term equal to 0.1. Figure 6 shows that the (4-18-2) multi-
layer perceptron represents the optimal architecture with minimum cumulative
error equal to 1.13x10-4 obtained after 40 cycles. Moreover, figure 10 (green
line) shows the responses of the joints velocities to the desired inputs, and figure
11 shows the evolution of the instantaneous square error between the desired
and actual position.

4-3 – Numerical simulation of the Third Method:

This new scheme is different from the two other approaches in that it
modifies the desired trajectory before inputting to the robot PD controller. A
number of neural network controllers have been trained using the error back-
propagation technique with different learning rates and different momentum
terms. Figure 7 shows an optimum learning rate equal to 10-6 and an optimum
momentum term equal to 0.1. Figure 6 shows that the (4-6-2) multi-layer
perceptron represents the optimal architecture with minimum error equal to
1.3x10-3 obtained after 40 cycles. Moreover, figure 9 (green line) shows the
responses of the joints positions to the desired inputs, and figure 11 shows the
evolution of the instantaneous square error between the desired and actual
position.

4-4 – Comparison between the three methods:

By making a comparison between the three methods with respect to the
cumulative error, figure 6 shows that the first method is the best in
performances. Its cumulative error is 2.5 times less than the second method and
5 times less than the third method. But the third method needs, in its optimal
architecture, less parameter than the two others do. While the first method needs
218 parameters and the second method 128 parameters, the third method need
only 44 parameters. Figure 11 shows the instantaneous temporal square error
obtained by the three methods between the desired trajectory and the actual
response. It is clear that the first method is the best in accuracy.

5 - COMMENTS AND PERSPECTIVES:

Applications in new technologies such as robotics, manufacturing, space
technology, and medical instrumentation, as well as those in older technologies
such as process control and aircraft control, are creating a wide spectrum of
control problems in which non-linearity, uncertainties, and complexity play a
major role [17]. For the solution of many of these problems techniques based on
artificial neural network are beginning to complement conventional control
techniques [18], and in some cases they are emerging as the only viable
alternatives. From a control theoretic point of view, artificial neural network
may be considered as tractable parameterized families of nonlinear maps. As
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such they have found wide application in pattern recognition problems, which
require nonlinear decision surfaces. With the introduction of dynamics and
feedback, the scope of such networks as identifiers and controllers in nonlinear
dynamical systems has increased significantly.

Our works aims to study three types of neural network controllers for
trajectory control of robotic manipulators, and to investigate the performances
of the application of these controllers (multi-layer perceptrons, MLP) for closed
loop 2D planar robot arm by using the back-propagation methods for the
adjustment of parameters. We have implemented the different algorithms and
we have obtained the optimal architecture in the three different methods. Good
results where obtained through the convergence of the algorithms. The first
method presents the smallest cumulative error in comparison with the two other
methods (figure 11) and the best response-time for the joint angle and velocity.
But the third method uses less input components and hidden neurons making the
real-time process faster. Moreover, this third method presents practical
advantages over the two other methods in that compensation is done outside the
control loop so it can be implemented easily at the command trajectory planning
level external to an existing robot controller.

Our target from this work is the real-time process (implementation on
DSP of different architectures in neural networks and studying the behavior of
all the process).

6 - REFERENCES:

[1]: T. J. Tarn, A. K. Bejczy, A. Isidori, and Y. Chen, "Nonlinear feedback in robot
arm control," in Proc. IEEE Conf. Decision and Control. Las Vegas, NV,
vol.2, pp.736-751, Dec 1984

[2]: L. L. Whitcomb, A. A. Rizzi, and D. E. Koditschek, "Comparative
experiments with a new adaptive controller for robot arm," IEEE Trans.
Robotics and Automation, vol. 9, no.1, pp. 59-69, 1993.

[3]: J. S Reed and P. A. Ioannou, "Instability analysis and robust adaptive control
of robotic manipulators," IEEE Trans. Robotics and Automation, vol.5, no.3,
pp. 381-386, 1989.

[4]: S. S. Ge and T. H. Lee, "Parallel adaptive neural network control of robots,"
Proc. Inst. Mechanical Engineers, Part I: J. Systems and Control Engineering,
vol. 208, pp. 231-237, 1994

[5]: F. L. Lewis, K. Liu, and A. Yesildirek, " Neural net robot controller with
guaranteed tracking performance," IEEE Trans. Neural Networks, vol. 6, no.3,
pp. 703-715, 1995

[6]: A. U. Levin and K. S. Narendra, “Control of nonlinear dynamical systems
using neural networks part II”, IEEE Trans on neural networks, vol.7, pp.31-
42, n01, January 1996.

[7]: S. S. Ge, C. C. Hang, and L. C. Woon, "Adaptive neural network control of
robot manipulators in task space," IEEE Trans. Industrial Electronics, vol.44,
no.6, pp.746-752, 1997

[8]: K. S. Narendra and K. Parthasarathy, Identification and control of dynamical
systems using neural networks, IEEE Trans. on Neural Networks, 1, pp.4-27
(1990).



Neural Networks for Robot Control - Final Report - Prof. Chaïban NASR. Page 15/18

[9]: D. H. Ballar, Cortical connections and parallel processing: structure and
function. In Vision, brain and cooperative computation, M.Arbib and Hamson
(eds.), pp.563-621, MIT Press, Cambridge, MA (1988).

[10]: D. E. Rumelhart and J. L. McClelland (eds.), Parallel distributed processing:
explorations in microstructure of cognition, 1: Foundations, MIT Press,
Cambridge, MA (1986).

[11]: F. J. Pineda, Recurrent back propagation and dynamical approach to adaptive
neural computation, Neural computation, 1, pp.162-172 (1989).

[12]: K. S. Narendra and K. Parthasarathy, Gradient methods for the optimization of
dynamical systems containing neural networks, IEEE Trans. on Neural
Networks, 2, pp.252-262 (1991).

[13]: M. Kawato, K. Furukawa, and R. Suzuki, "Hierarchical neural-network model
for control and learning of voluntary movement," Biological Cybernetics, vol.
57, pp.169-185, 1987

[14]: R. A. Jacobs, and M. I. Jordan, "Learning piecewise control strategies in a
modular neural network architecture," IEEE Trans. on Systems, Man, and
Cybernetics, vol. 23, no.2, pp.337-345, 1993

[15]: S. Jung, and T. C. Hsia, "New neural network control technique for non-model
based robot manipulator control," IEEE Trans. on Systems, Man, and
Cybernetics, vol.1, pp.2928-2933, 1995

[16]: S. Jung, and T. C. Hsia, "On reference trajectory modification approach for
Cartesian space neural network control of robot manipulators," Proc. of IEEE
International Conference on Robotics and Automation, Nagoya, 1995

[17]: Q. Song, J. Xiao, and Y. C. Soh, "Robust Back-propagation Training
Algorithm for Multi-layered Neural Tracking Controller," IEEE Trans. on
Neural Networks, vol. 10, no.5, pp.1133-1141, 1999.

[18]: K. S. Narendra, Neural Networks for Control: Theory and Practice,
Proceedings of the IEEE, vol.84 no10, (1996).

*********************************************************************

This work was funded by the U. S. Air Force Office of Scientific Research (AFOSR),
the European Office of Aerospace Research and Development (EOARD) under the
supervision of Dr. Charbel N Raffoul.

********************************************************************



Neural Networks for Robot Control - Final Report - Prof. Chaïban NASR. Page 16/18

RESULTS OF THE SIMULATIONS

Fig.6: -Optimized architecture of the neural network controller for the three methods

Fig.7: -Optimized learning rate and Momentum term for the three methods
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Fig.8: -Simulated trajectory of the end-effector in the yz Cartesian plane

Fig.9: -Desired and actual joints position responses
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Fig.10: -Desired and actual joints velocity responses   

Fig.11: - Instantaneous square error between actual and desired position
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